cs.AI updates on arXiv.org 10月15日 13:10
智能农业联邦学习架构设计
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种适用于智能农业生产系统和作物产量预测的新型分层联邦学习架构。该架构采用季节性订阅机制,使农场在农业季节开始时加入特定作物的集群。通过三层数据处理,实现个体智能农场、作物特定聚合器和全局模型聚合器的协同训练,以保护数据隐私并降低通信开销。实验结果表明,该系统在提高预测准确性方面优于标准机器学习模型。

arXiv:2510.12727v1 Announce Type: cross Abstract: In this paper, we presents a novel hierarchical federated learning architecture specifically designed for smart agricultural production systems and crop yield prediction. Our approach introduces a seasonal subscription mechanism where farms join crop-specific clusters at the beginning of each agricultural season. The proposed three-layer architecture consists of individual smart farms at the client level, crop-specific aggregators at the middle layer, and a global model aggregator at the top level. Within each crop cluster, clients collaboratively train specialized models tailored to specific crop types, which are then aggregated to produce a higher-level global model that integrates knowledge across multiple crops. This hierarchical design enables both local specialization for individual crop types and global generalization across diverse agricultural contexts while preserving data privacy and reducing communication overhead. Experiments demonstrate the effectiveness of the proposed system, showing that local and crop-layer models closely follow actual yield patterns with consistent alignment, significantly outperforming standard machine learning models. The results validate the advantages of hierarchical federated learning in the agricultural context, particularly for scenarios involving heterogeneous farming environments and privacy-sensitive agricultural data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 智能农业 作物产量预测 数据隐私 机器学习
相关文章