cs.AI updates on arXiv.org 10月15日 13:09
ReLU神经网络激活模式拓扑特征分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究ReLU激活函数前馈神经网络的拓扑特征,分析网络诱导的特征空间的多面体分解,探讨Fiedler划分与二分类决策边界的关联,并计算回归任务中细胞分解的同调,以揭示训练损失与多面体单元计数之间的关系。

arXiv:2510.12700v1 Announce Type: cross Abstract: This paper explores the topological signatures of ReLU neural network activation patterns. We consider feedforward neural networks with ReLU activation functions and analyze the polytope decomposition of the feature space induced by the network. Mainly, we investigate how the Fiedler partition of the dual graph and show that it appears to correlate with the decision boundary -- in the case of binary classification. Additionally, we compute the homology of the cellular decomposition -- in a regression task -- to draw similar patterns in behavior between the training loss and polyhedral cell-count, as the model is trained.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ReLU神经网络 拓扑特征 决策边界 同调分析 多面体分解
相关文章