cs.AI updates on arXiv.org 10月15日
基于评分扩散模型的人体运动生成新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于评分扩散模型的人体运动生成新方法,通过特征空间归一化和L2分数匹配损失,避免了过度参数化,直接生成运动和形状,提高了生成效果。

arXiv:2510.12537v1 Announce Type: cross Abstract: Recent work has explored a range of model families for human motion generation, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion-based models. Despite their differences, many methods rely on over-parameterized input features and auxiliary losses to improve empirical results. These strategies should not be strictly necessary for diffusion models to match the human motion distribution. We show that on par with state-of-the-art results in unconditional human motion generation are achievable with a score-based diffusion model using only careful feature-space normalization and analytically derived weightings for the standard L2 score-matching loss, while generating both motion and shape directly, thereby avoiding slow post hoc shape recovery from joints. We build the method step by step, with a clear theoretical motivation for each component, and provide targeted ablations demonstrating the effectiveness of each proposed addition in isolation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人体运动生成 评分扩散模型 L2分数匹配损失
相关文章