cs.AI updates on arXiv.org 10月15日 13:03
LiteVPNet:高效视频流媒体质量控制神经网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LiteVPNet的轻量级神经网络,用于准确预测NVENC AV1编码器的量化参数,以实现特定VMAF评分,提高视频流媒体质量控制与能源效率。

arXiv:2510.12379v1 Announce Type: cross Abstract: In the last decade, video workflows in the cinema production ecosystem have presented new use cases for video streaming technology. These new workflows, e.g. in On-set Virtual Production, present the challenge of requiring precise quality control and energy efficiency. Existing approaches to transcoding often fall short of these requirements, either due to a lack of quality control or computational overhead. To fill this gap, we present a lightweight neural network (LiteVPNet) for accurately predicting Quantisation Parameters for NVENC AV1 encoders that achieve a specified VMAF score. We use low-complexity features, including bitstream characteristics, video complexity measures, and CLIP-based semantic embeddings. Our results demonstrate that LiteVPNet achieves mean VMAF errors below 1.2 points across a wide range of quality targets. Notably, LiteVPNet achieves VMAF errors within 2 points for over 87% of our test corpus, c.f. approx 61% with state-of-the-art methods. LiteVPNet's performance across various quality regions highlights its applicability for enhancing high-value content transport and streaming for more energy-efficient, high-quality media experiences.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频流媒体 质量控制 神经网络 能源效率 NVENC AV1编码
相关文章