cs.AI updates on arXiv.org 10月15日
新型神经网络采样框架提升性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型神经网络采样框架,降低计算复杂度,提高性能,并在3D医学影像和超声视频分类任务中验证其有效性。

arXiv:2510.12376v1 Announce Type: cross Abstract: Although deep neural networks have provided impressive gains in performance, these improvements often come at the cost of increased computational complexity and expense. In many cases, such as 3D volume or video classification tasks, not all slices or frames are necessary due to inherent redundancies. To address this issue, we propose a novel learnable subsampling framework that can be integrated into any neural network architecture. Subsampling, being a nondifferentiable operation, poses significant challenges for direct adaptation into deep learning models. While some works, have proposed solutions using the Gumbel-max trick to overcome the problem of non-differentiability, they fall short in a crucial aspect: they are only task-adaptive and not inputadaptive. Once the sampling mechanism is learned, it remains static and does not adjust to different inputs, making it unsuitable for real-world applications. To this end, we propose an attention-guided sampling module that adapts to inputs even during inference. This dynamic adaptation results in performance gains and reduces complexity in deep neural network models. We demonstrate the effectiveness of our method on 3D medical imaging datasets from MedMNIST3D as well as two ultrasound video datasets for classification tasks, one of them being a challenging in-house dataset collected under real-world clinical conditions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 采样框架 性能提升 3D医学影像 超声视频分类
相关文章