cs.AI updates on arXiv.org 10月15日 13:01
因果驱动的多模态推荐系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种因果驱动的多模态推荐系统,通过解决模态混淆和交互偏差问题,提高个性化推荐效果。实验证明,该方法在电商数据集上优于现有方法。

arXiv:2510.12325v1 Announce Type: cross Abstract: Multimodal recommender systems enhance personalized recommendations in e-commerce and online advertising by integrating visual, textual, and user-item interaction data. However, existing methods often overlook two critical biases: (i) modal confounding, where latent factors (e.g., brand style or product category) simultaneously drive multiple modalities and influence user preference, leading to spurious feature-preference associations; (ii) interaction bias, where genuine user preferences are mixed with noise from exposure effects and accidental clicks. To address these challenges, we propose a Causal-inspired multimodal Recommendation framework. Specifically, we introduce a dual-channel cross-modal diffusion module to identify hidden modal confounders, utilize back-door adjustment with hierarchical matching and vector-quantized codebooks to block confounding paths, and apply front-door adjustment combined with causal topology reconstruction to build a deconfounded causal subgraph. Extensive experiments on three real-world e-commerce datasets demonstrate that our method significantly outperforms state-of-the-art baselines while maintaining strong interpretability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态推荐 因果推理 个性化推荐 电商 数据集
相关文章