cs.AI updates on arXiv.org 10月15日 12:56
领域自适应与数据稀缺问题研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨计算机视觉领域数据稀缺问题,提出领域自适应方法以克服数据不足的挑战,通过训练特定数据集的模型预测不同领域数据,旨在提高图像分类等领域的预测准确度。

arXiv:2510.12075v1 Announce Type: cross Abstract: The major challenge in today's computer vision scenario is the availability of good quality labeled data. In a field of study like image classification, where data is of utmost importance, we need to find more reliable methods which can overcome the scarcity of data to produce results comparable to previous benchmark results. In most cases, obtaining labeled data is very difficult because of the high cost of human labor and in some cases impossible. The purpose of this paper is to discuss Domain Adaptation and various methods to implement it. The main idea is to use a model trained on a particular dataset to predict on data from a different domain of the same kind, for example - a model trained on paintings of airplanes predicting on real images of airplanes

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

领域自适应 数据稀缺 计算机视觉 图像分类 模型训练
相关文章