cs.AI updates on arXiv.org 10月15日 12:55
APCE:长文本摘要中高效处理输入片段的方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对长文本摘要任务,提出APCE方法,通过低维语义相似度匹配选择重要输入片段,有效减少内存占用并缓解ContextRot现象,实现高效处理。

arXiv:2510.12051v1 Announce Type: cross Abstract: Deploying useful Long-Context Transformer Models (LCTMs) requires addressing two key challenges: (1) A growing memory footprint due to quadratic self-attention and linear KV-cache scaling in memory as sequence length increases; (2) the ContextRot phenomena where empirical evidence suggests that transformer architecture's performance degrades with increasing context length. Given the shared dependency on the input, a natural question arises: Can we surgically select the most important input chunks for processing to synergistically (a) reduce the memory footprint, and (b) mitigate the ContextRot effects? In this paper, we answer this question in the affirmative for long-context summarization tasks. We propose APCE as a context-aware solution to select the most important input chunks through low-dimensional semantic similarity matching with the current query. By directly operating on the input, APCE decouples from strict dependency on underlying hardware or CUDA environments, promising a compatible solution scalable to different deployment systems. Our empirical evaluations have demonstrated superior or on-par summarization performance for APCE compared to the full dense baseline using a fraction (50%-70%) of the input sequence resulting in KV-cache and self-attention memory efficiency improvements. We hope our findings inspire further research on context-aware efficiency solutions for LCTMs geared towards other relevant long-context tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

长文本摘要 APCE方法 语义相似度匹配 ContextRot现象 内存效率
相关文章