arXiv:2510.12044v1 Announce Type: cross Abstract: Existing alignment techniques for Large Language Models (LLMs), such as Direct Preference Optimization (DPO), typically treat the model as a monolithic entity, applying uniform optimization pressure across all layers. This approach overlooks the functional specialization within the Transformer architecture, where different layers are known to handle distinct tasks from syntax to abstract reasoning. In this paper, we challenge this one-size-fits-all paradigm by introducing Hierarchical Alignment, a novel method that applies targeted DPO to distinct functional blocks of a model's layers: local (syntax), intermediate (logic), and global (factuality). Through a series of controlled experiments on state-of-the-art models like Llama-3.1-8B and Qwen1.5-7B using LoRA for surgical fine-tuning, our results, evaluated by a powerful LLM-as-Judge, demonstrate significant and predictable improvements. Specifically, aligning the local layers (Local-Align) enhances grammatical fluency. More importantly, aligning the global layers (Global-Align) not only improves factual consistency as hypothesized but also proves to be the most effective strategy for enhancing logical coherence, outperforming all baselines. Critically, all hierarchical strategies successfully avoid the "alignment tax" observed in standard DPO, where gains in fluency come at the cost of degraded logical reasoning. These findings establish a more resource-efficient, controllable, and interpretable path for model alignment, highlighting the immense potential of shifting from monolithic optimization to structure-aware surgical fine-tuning to build more advanced and reliable LLMs.
