cs.AI updates on arXiv.org 10月15日 12:52
CLIP与DINO在VLM性能中的差异分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比CLIP和DINO在视觉语言模型中的性能,分析其差异来源,发现CLIP在文本密集型任务中表现更优,而DINO在视觉中心任务中略胜一筹。

arXiv:2510.11835v1 Announce Type: cross Abstract: CLIP outperforms self-supervised models like DINO as vision encoders for vision-language models (VLMs), but it remains unclear whether this advantage stems from CLIP's language supervision or its much larger training data. To disentangle these factors, we pre-train CLIP and DINO under controlled settings -- using the same architecture, dataset, and training configuration -- achieving similar ImageNet accuracy. Embedding analysis shows that CLIP captures high-level semantics (e.g., object categories, text), while DINO is more responsive to low-level features like colors and styles. When integrated into VLMs and evaluated on 20 VQA benchmarks, CLIP excels at text-intensive tasks, while DINO slightly outperforms on vision-centric ones. Variants of language supervision (e.g., sigmoid loss, pre-trained language encoders) yield limited gains. Our findings provide scientific insights into vision encoder design and its impact on VLM performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CLIP DINO 视觉语言模型 性能分析 VLM
相关文章