cs.AI updates on arXiv.org 10月15日 12:48
PLASMA:蛋白质子结构对齐新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PLASMA,一种高效且可解释的蛋白质子结构对齐深度学习框架,填补了蛋白质结构分析工具的空白,为功能注释、进化研究和基于结构的药物设计提供新机遇。

arXiv:2510.11752v1 Announce Type: cross Abstract: Proteins are essential biological macromolecules that execute life functions. Local motifs within protein structures, such as active sites, are the most critical components for linking structure to function and are key to understanding protein evolution and enabling protein engineering. Existing computational methods struggle to identify and compare these local structures, which leaves a significant gap in understanding protein structures and harnessing their functions. This study presents PLASMA, the first deep learning framework for efficient and interpretable residue-level protein substructure alignment. We reformulate the problem as a regularized optimal transport task and leverage differentiable Sinkhorn iterations. For a pair of input protein structures, PLASMA outputs a clear alignment matrix with an interpretable overall similarity score. Through extensive quantitative evaluations and three biological case studies, we demonstrate that PLASMA achieves accurate, lightweight, and interpretable residue-level alignment. Additionally, we introduce PLASMA-PF, a training-free variant that provides a practical alternative when training data are unavailable. Our method addresses a critical gap in protein structure analysis tools and offers new opportunities for functional annotation, evolutionary studies, and structure-based drug design. Reproducibility is ensured via our official implementation at https://github.com/ZW471/PLASMA-Protein-Local-Alignment.git.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

蛋白质结构 子结构对齐 深度学习
相关文章