arXiv:2510.12091v1 Announce Type: new Abstract: We introduce ToPolyAgent, a multi-agent AI framework for performing coarse-grained molecular dynamics (MD) simulations of topological polymers through natural language instructions. By integrating large language models (LLMs) with domain-specific computational tools, ToPolyAgent supports both interactive and autonomous simulation workflows across diverse polymer architectures, including linear, ring, brush, and star polymers, as well as dendrimers. The system consists of four LLM-powered agents: a Config Agent for generating initial polymer-solvent configurations, a Simulation Agent for executing LAMMPS-based MD simulations and conformational analyses, a Report Agent for compiling markdown reports, and a Workflow Agent for streamlined autonomous operations. Interactive mode incorporates user feedback loops for iterative refinements, while autonomous mode enables end-to-end task execution from detailed prompts. We demonstrate ToPolyAgent's versatility through case studies involving diverse polymer architectures under varying solvent condition, thermostats, and simulation lengths. Furthermore, we highlight its potential as a research assistant by directing it to investigate the effect of interaction parameters on the linear polymer conformation, and the influence of grafting density on the persistence length of the brush polymer. By coupling natural language interfaces with rigorous simulation tools, ToPolyAgent lowers barriers to complex computational workflows and advances AI-driven materials discovery in polymer science. It lays the foundation for autonomous and extensible multi-agent scientific research ecosystems.
