arXiv:2510.12066v1 Announce Type: new Abstract: AI reasoning agents are already able to solve a variety of tasks by deploying tools, simulating outcomes of multiple hypotheses and reflecting on them. In doing so, they perform computation, although not in the classical sense -- there is no program being executed. Still, if they perform computation, can AI agents be universal? Can chain-of-thought reasoning solve any computable task? How does an AI Agent learn to reason? Is it a matter of model size? Or training dataset size? In this work, we reinterpret the role of learning in the context of AI Agents, viewing them as compute-capable stochastic dynamical systems, and highlight the role of time in a foundational principle for learning to reason. In doing so, we propose a shift from classical inductive learning to transductive learning -- where the objective is not to approximate the distribution of past data, but to capture their algorithmic structure to reduce the time needed to find solutions to new tasks. Transductive learning suggests that, counter to Shannon's theory, a key role of information in learning is about reduction of time rather than reconstruction error. In particular, we show that the optimal speed-up that a universal solver can achieve using past data is tightly related to their algorithmic information. Using this, we show a theoretical derivation for the observed power-law scaling of inference time versus training time. We then show that scaling model size can lead to behaviors that, while improving accuracy on benchmarks, fail any reasonable test of intelligence, let alone super-intelligence: In the limit of infinite space and time, large models can behave as savants, able to brute-force through any task without any insight. Instead, we argue that the key quantity to optimize when scaling reasoning models is time, whose critical role in learning has so far only been indirectly considered.
