cs.AI updates on arXiv.org 10月15日 12:35
ThinkPilot:训练免费优化LRM推理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍ThinkPilot,一种训练免费框架,通过进化过程自动优化大型推理模型(LRM)的推理,显著提高推理效率、安全性和指令遵循能力。

arXiv:2510.12063v1 Announce Type: new Abstract: Large Reasoning Models (LRMs) are powerful, but they still suffer from inefficient and off-target reasoning. Currently, training-free methods are limited to either rigid heuristics or descriptive, non-actionable analyses. In this paper, we introduce ThinkPilot, a training-free framework that automatically optimizes LRMs reasoning. It uses an evolutionary process to generate think-prefixes, which are instructions that evolve driven by a taxonomy of reasoning behaviors to guide models toward superior performance. Extensive experiments demonstrate ThinkPilot's broad effectiveness: it significantly improves the accuracy-length trade-off for efficient reasoning, drastically improves safety (for example, cutting the StrongREJECT score of DeepSeek-R1-Distill-Qwen-32B from 27.0% to 0.7), and enhances instruction following. It also synergizes with existing training-based methods. Our analysis reveals that think-prefixes can reliably control LRMs' reasoning behaviors, and that different tasks have strong preferences for specific behavioral distributions. By automatically identifying and eliciting these behaviors, ThinkPilot provides a generalizable framework for aligning LRMs reasoning with task demands. Data and code are available at https://github.com/teqkilla/ThinkPilot

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LRM 推理优化 训练免费 指令遵循
相关文章