cs.AI updates on arXiv.org 10月15日
地理感知层提升灾难响应效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出地理感知层(GAL)以增强大型语言模型(LLM)在灾难响应中的应用,通过整合地理信息,提升资源分配建议的准确性,并可在洪水、飓风等灾害中推广。

arXiv:2510.12061v1 Announce Type: new Abstract: Effective disaster response is essential for safeguarding lives and property. Existing statistical approaches often lack semantic context, generalize poorly across events, and offer limited interpretability. While Large language models (LLMs) provide few-shot generalization, they remain text-bound and blind to geography. To bridge this gap, we introduce a Geospatial Awareness Layer (GAL) that grounds LLM agents in structured earth data. Starting from raw wildfire detections, GAL automatically retrieves and integrates infrastructure, demographic, terrain, and weather information from external geodatabases, assembling them into a concise, unit-annotated perception script. This enriched context enables agents to produce evidence-based resource-allocation recommendations (e.g., personnel assignments, budget allocations), further reinforced by historical analogs and daily change signals for incremental updates. We evaluate the framework in real wildfire scenarios across multiple LLM models, showing that geospatially grounded agents can outperform baselines. The proposed framework can generalize to other hazards such as floods and hurricanes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

地理感知层 大型语言模型 灾难响应 资源分配 地理信息
相关文章