[1]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks [J]. Nature, 1998, 393(6684): 440-442.
[2]Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.
[3]方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学:网络科学(上) [J]. 物理学进展, 2007, 27(3): 239-343.
Fang J Q, Wang X F, Zheng Z G, et al. New interdisciplinary science: Network science(I)[J]. Prog Phys, 2007, 27(3): 239-343.
[4]方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学:网络科学(下) [J]. 物理学进展, 2007, 27(4): 361-448.
Fang J Q, Wang X F, Zheng Z G, et al. New interdisciplinary science: Network science(II) [J]. Prog Phys, 2007, 27(4): 361-448.
[5]汪小帆, 李翔, 陈关荣. 网络科学导论 [M]. 北京: 高等教育出版社, 2012.
Wang X F, Li X, Chen G R. Network science: An introduction [M]. Beijing: Higher Education Press, 2012
[6]刘作仪. 复杂网络理论及相关管理复杂性研究的资助进展 [J]. 中国科学基金, 2008, 22(1): 13-17.
Liu Z Y. Research progress on complexity network and it's application in the area of management science[J]. Science Foundation in China, 2008, 22(1): 13-17.
[7]Barabási A-L. Network science [M]. Cambridge: Cambridge University Press, 2016.
[8]Shargel B, Sayama H, Epstein I R, et al. Optimization of robustness and connectivity in complex networks [J]. Phys Rev Lett, 2003, 90(6): 068701.
[9]谭跃进, 吕欣, 吴俊, 等. 复杂网络抗毁性研究若干问题的思考 [J]. 系统工程理论与实践, 2008, 28(S0): 116-120.
Tan Y J, Lv X, Wu J, et al. On the invulnerable research of complex networks [J]. System Eng Theor Prac, 2008, 28(S0): 116-120.
[10]吴俊, 段东立, 赵娟, 等. 网络系统可靠性研究现状与展望 [J]. 复杂系统与复杂性科学, 2011, 8(2): 77-86.
Wu J, Duan D L, Zhao J, et al. Status and prospects on network reliability [J]. Complex Syst Complexity Sci, 2011, 8(2): 77-86.
[11]Schneider C M, Moreira A A, Andrade J S, et al. Mitigation of malicious attacks on networks [J]. Proc Natl Acad Sci USA, 2011, 108(10): 3838-3841.
[12]Gouveia L, Leitner M. Design of survivable networks with vulnerability constraints [J]. Eur J Oper Res, 2016, 258(1): 89-103.
[13]Ouyang M. A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks [J]. Eur J Oper Res, 2017, 262(3): 1072-1084.
[14]Peng G-S, Wu J. Optimal network topology for structural robustness based on natural connectivity [J]. Physica A, 2016, 443(2): 212-220.
[15]Wu J, Tan S-Y, Liu Z, et al. Enhancing structural robustness of scale-free networks by information disturbance [J]. Sci Rep, 2017, 7(1): 1-13.
[16]付举磊, 孙多勇, 肖进, 等. 基于社会网络分析理论的恐怖组织网络研究综述 [J]. 系统工程理论与实践, 2013, 33(9): 2177-2186.
Fu J L, Sun D Y, Xiao J, et al. Review of the research on the terrorist networks based on social network analysis [J]. System Eng Theor Prac, 2013, 33(9): 2177-2186.
[17]Carley K M, Reminga J, Kamneva N. Destabilizing terrorist networks[C]. In: Proceedings of the 8th International Command and Control Research and Technology Symposium, National Defense War College, Washington DC, 2003.
[18]Chaurasia N, Tiwari A. Efficient algorithm for destabilization of terrorist networks [J]. Int J Inf Technol Comput Sci, 2013, 12: 21-30.
[19]曹进德, 王毅. 复杂网络疾病传播动力学研究进展 [J]. 大学数学, 2016, 32(4): 1-11.
Cao J D, Wang Y. Research developments of disease spread dynamics in complex networks [J]. College Math, 2016, 32(4): 1-11.
[20]孙皓宸, 徐铭达, 许小可. 基于真实人际接触数据的新冠肺炎校园传播与防控 [J]. 电子科技大学学报, 2020, 49(3): 399-407.
Sun H C, Xu M D, Xu X K. Infection and prevention of COVID-19 in schools based on real-life interpersonal contact data [J]. J Univ Electron Sci Technol Chin, 2020, 49(3): 399-407.
[21]Anggraini D, Madenda S, Wibowo E P, et al. Network disintegration in criminal network[C]. In: Proceeding of the 11th International Conference on Signal-Image Technology & Internet-Based Systems, IEEE, 2015: 192-199.
[22]Bright D, Greenhill C, Britz T, et al. Criminal network vulnerabilities and adaptations [J]. Global Crime, 2017, 18(4): 424-441.
[23]Malaviya A, Rainwater C, Sharkey T. Multi-period network interdiction problems with applications to city-level drug enforcement [J]. IIE Trans, 2012, 44(5): 368-380.
[24]Michalopoulos D P, Barnes J W, Morton D P. Prioritized interdiction of nuclear smuggling via tabu search [J]. Optim Lett, 2015, 9(8): 1477-1494.
[25]Quayle A P, Siddiqui A S, Jones S J M. Preferential network perturbation [J]. Physica A, 2006, 371: 823-840.
[26]Tripathy R M, Bagchi A, Mehta S. A study of rumor control strategies on social networks[C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. 2010: 1817-1820.
[27]Kobayashi T, Hasui K. Efficient immunization strategies to prevent financial contagion [J]. Sci Rep, 2014, 4(1): 1-7.
[28]金伟新. 体系对抗复杂网络建模与仿真 [M]. 北京: 电子工业出版社, 2010.
Jin W X. SoS-Ops M&S based on the complex network [M]. Beijing: Publishing House of Electronics Industry, 2010.
[29]Tan S-Y, Wu J, Lu L, et al. Efficient network disintegration under incomplete information: the comic effect of link prediction [J]. Sci Rep, 2016, 6: 1-9.
[30]Wood R K. Deterministic network interdiction [J]. Math Comput Model, 1993, 17(2): 1-18.
[31]Phillips C A. The network inhibition problem[C]. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing. 1993: 776–785.
[32]Braunstein A, Dall'asta L, Semerjian G, et al. Network dismantling [J]. Proc Natl Acad Sci USA, 2016, 113(44): 12368-12373.
[33]Carley K M, Lee J-S, Krackhardt D. Destabilizing networks [J]. Connections, 2002, 24(3): 79-92.
[34]Lalou M, Tahraoui M A, Kheddouci H. The critical node detection problem in networks: A survey [J]. Comput Sci Rev, 2018, 28: 92-117.
[35]Faramondi L, Oliva G, Setola R, et al. Performance analysis of single and multi-objective approaches for the critical node detection problem[C]. In: Proceedings of the International Conference on Optimization and Decision Science. Springer, Cham, 2017: 315-324.
[36]Borgatti S P. Identifying sets of key players in a social network [J]. Comput Math Org Theor, 2006, 12(1): 21-34.
[37]Zwaan R V D, Berger A, Grigoriev A. How to cut a graph into many pieces[C]. In: Proceedings of the International Conference on Theory and Applications of Models of Computation. Springer, Berlin, Heidelberg, 2011, 184-194.
[38]Shen S, Smith J C. Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs [J]. Networks, 2012, 60(2): 103-119.
[39]Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks [J]. Nature, 2000, 406(6794): 378-382.
[40]Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks [J]. Phys Rev E, 2002, 65(2): 056109.
[41]Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and populations [J]. Phys Rev Lett, 2003, 91: 247901.
[42]Holme P. Efficient local strategies for vaccination and network attack [J]. Europhys Lett, 2004, 68(6): 908-914.
[43]Gallos L K, Liljeros F, Argyrakis P, et al. Improving immunization strategies [J]. Phys Rev E, 2007, 75(4).
[44]Pajouh F M, Boginski V, Pasiliao E L. Minimum vertex blocker clique problem [J]. Networks, 2014, 64(1): 48-64.
[45]Hewett R. Toward identification of key breakers in social cyber-physical networks[C]. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2011: 2731-2736.
[46]Ortiz-Arroyo D, Hussain D M. An information theory approach to identify sets of key players[C]. In: Proceedings of the European Conference on Intelligence and Security Informatics. Springer, Berlin, Heidelberg, 2008: 15-26.
[47]Arulselvan A, Commander C W, Elefteriadou L, et al. Detecting critical nodes in sparse graphs [J]. Comput Oper Res, 2009, 36(7): 2193-2200.
[48]Ventresca M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem [J]. Comput Oper Res, 2012, 39(11): 2763-2775.
[49]Ventresca M, Aleman D. A derandomized approximation algorithm for the critical node detection problem [J]. Comput Oper Res, 2014, 43(4): 261-270.
[50]Ball M O, Golden B L, V.Vohra R. Finding the most vital arcs in a network [J]. Oper Res Lett, 1989, 8(2): 73-76.
[51]Israeli E, Wood R K. Shortest-path network interdiction [J]. Networks, 2002, 40(2): 97-111.
[52]Nardelli E, Proietti G, Widmayer P. Finding the most vital node of a shortest path [J]. Theor Comput Sci, 2003, 296(1): 167-177.
[53]Bayrak H, Bailey M D. Shortest path network interdiction with asymmetric information [J]. Networks, 2008, 52(3): 133-140.
[54]Sefair J A, Smith J C. Dynamic shortest-path interdiction [J]. Networks, 2016, 68(4): 315-330.
[55]Song Y, Shen S. Risk-averse shortest path interdiction [J]. Informs J Comput, 2016, 28(3): 527-539.
[56]Sadeghi S, Seifi A, Azizi E. Trilevel shortest path network interdiction with partial fortification [J]. Comput Ind Eng, 2017, 106: 400-411.
[57]Holzmann T, Smith J C. Shortest path interdiction problem with arc improvement recourse: A multiobjective approach [J]. Nav Res Logist, 2019, 66(3): 230-252.
[58]Pay B S, Merrick J R W, Song Y. Stochastic network interdiction with incomplete preference [J]. Networks, 2019, 73(1): 3-22.
[59]Wollmer R. Removing arcs from a network [J]. Oper Res, 1964, 12(6): 934-940.
[60]Corley H W, Chang H. Finding the n most vital nodes in a flow network [J]. Manage Sci, 1974, 21(3): 362-364.
[61]Ratliff H D, Sicilia G T, Lubore S H. Finding the n most vital links in flow networks [J]. Manage Sci, 1975, 21(5): 531-539.
[62]Rocco S C M, Ramirez-Marquez J E. Deterministic network interdiction optimization via an evolutionary approach [J]. Reliab Eng Syst Saf, 2009, 94(2): 568-576.
[63]Altner D S, Ergun O, Uhan N A. The maximum flow network interdiction problem: Valid inequalities, integrality gaps, and approximability [J]. Oper Res Lett, 2010, 38(1): 33-38.
[64]Akgun I, Tansel B C, Wood R K. The multi-terminal maximum-flow network-interdiction problem [J]. Eur J Oper Res, 2011, 211(2): 241-251.
[65]Sullivan K M, Smith J C. Exact algorithms for solving a Euclidean maximum flow network interdiction problem [J]. Networks, 2014, 64(2): 109-124.
[66]Rad M A, Kakhki H T. Two extended formulations for cardinality maximum flow network interdiction problem [J]. Networks, 2017, 69(4): 367-377.
[67]Lei X, Shen S, Song Y. Stochastic maximum flow interdiction problems under heterogeneous risk preferences [J]. Comput Oper Res, 2018, 90: 97-109.
[68]Zenklusen R. Matching interdiction [J]. Discret Appl Math, 2010, 158(15): 1676-1690.
[69]Feng P, Schild A. Interdiction problems on planar graphs [J]. Discret Appl Math, 2013, 198: 215–231.
[70]Lin K C, Chern M S. The most vital edges in the minimum spanning tree problem [J]. Inf Process Lett, 1993, 45(1): 25-31.
[71]Bazgan C, Toubaline S, Vanderpooten D. Efficient determination of the k most vital edges for the minimum spanning tree problem [J]. Comput Oper Res, 2012, 39(11): 2888-2898.
[72]Bazgan C, Toubaline S, Vanderpooten D. Critical edges/nodes for the minimum spanning tree problem: complexity and approximation [J]. J Comb Optim, 2013, 26(1): 178-189.
[73]Deng Y, Wu J, Xiao Y, et al. Efficient disintegration strategies with cost constraint in complex networks: The crucial role of nodes near average degree [J]. Chaos, 2018, 28(6): 061101.
[74]Lozano M, Garcia-Martinez C, Rodriguez F J, et al. Optimizing network attacks by artificial bee colony [J]. Inf Sci, 2017, 377: 30-50.
[75]Veremyev A, Prokopyev O A, Pasiliao E L. An integer programming framework for critical elements detection in graphs [J]. J Comb Optim, 2014, 28(1): 233-273.
[76]Lewis J M, M M Y. The node-deletion problem for hereditary properties is NP-complete [J]. J Comput Syst Sci, 1980, 20(2): 219-230.
[77]Yannakakis M. Node-deletion problems on bipartite graphs [J]. SIAM J Comput, 1981, 10(2): 310-327.
[78]Di Summa M, Grosso A, Locatelli M. Branch and cut algorithms for detecting critical nodes in undirected graphs [J]. Comput Optim Appl, 2012, 53(3): 649-680.
[79]Veremyev A, Boginski V, Pasiliao E L. Exact identification of critical nodes in sparse networks via new compact formulations [J]. Optim Lett, 2014, 8(4): 1245-1259.
[80]Ventresca M, Aleman D. A derandomized approximation algorithm for the critical node detection problem [J]. Comput Oper Res, 2014, 43: 261-270.
[81]Shen Y, Nguyen N P, Xuan Y, et al. On the discovery of critical links and nodes for assessing network vulnerability [J]. IEEE/ACM Trans Netw, 2013, 21(3): 963-973.
[82]Shen S, Smith J C, Goli R. Exact interdiction models and algorithms for disconnecting networks via node deletions [J]. Discret Optim, 2012, 9(3): 172-188.
[83]Fan N, Pardalos P M. Robust optimization of graph partitioning and critical node detection in analyzing networks[C]. In: Proceedings of the International Conference on Combinatorial Optimization and Applications. Springer, Berlin, Heidelberg, 2010: 170-183.
[84]刘建国, 任卓明, 郭强, 等. 复杂网络中节点重要性排序的研究进展 [J]. 物理学报, 2013, 62(17): 9-18.
Liu J G, Ren Z M, Guo Q, et al. Node importance ranking of complex networks [J]. Acta Phys Sin, 2013, 62(17): 9-18.
[85]任晓龙, 吕琳媛. 网络重要节点排序方法综述 [J]. 科学通报, 2014, 59(13): 1175-1197.
Ren X L, Lv L Y. Review of ranking nodes in complex networks [J]. Chin Sci Bull, 2014, 59(13): 1175-1197
[86]Carmi S, Havlin S, Kirkpatrick S, et al. A model of Internet topology using k-shell decomposition [J]. Proc Natl Acad Sci USA, 2007, 104(27): 11150-11154.
[87]Wandelt S, Sun X, Feng D, et al. A comparative analysis of approaches to network-dismantling [J]. Sci Rep, 2018, 8(1): 1-15.
[88]Freeman L C. A set of measures of centrality based on betweenness [J]. Sociometry, 1977: 35-41.
[89]Geisberger R, Sanders P, Schultes D. Better approximation of betweenness centrality[C]. In: Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments. Society for Industrial and Applied Mathematics, 2008: 90-100.
[90]Freeman L C. Centrality in social networks conceptual clarification [J]. Soc Networks, 1978, 1(3): 215-239.
[91]Qin J L, Xu J, Hu D, et al. Analyzing terrorist networks: A case study of the global salafi jihad network[C]. In: Proceedings of the International Conference on Intelligence and Security Informatics. Springer, Berlin, Heidelberg, 2005: 287-304.
[92]Aringhieri R, Grosso A, Hosteins P, et al. VNS solutions for the critical node problem [J]. Electron Notes Discret Math, 2015, 47: 37-44.
[93]Pullan W. Heuristic identification of critical nodes in sparse real-world graphs [J]. J Heuristics, 2015, 21(5): 577-598.
[94]Chen W, Wang Y, Yang S. Efficient influence maximization in social networks[C]. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009: 199-208.
[95]Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks[C]. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. 2010: 1029-1038.
[96]胡庆成, 尹龑燊, 马鹏斐, 等. 一种新的网络传播中最有影响力的节点发现方法[J]. 物理学报, 2013, 62(14): 9-19.
Hu Q C, Yin Y S, Ma P F, et al. A new approach to identify influential spreaders in complex networks [J]. Acta Phys Sin, 2013, 62(14): 9-19.
[97] Holme P. Efficient local strategies for vaccination and network attack [J]. Europhys Lett, 2004, 68(6): 908-914.
[98]Morone F, Makse H A. Influence maximization in complex networks through optimal percolation [J]. Nature, 2015, 524(7563): 65-68.
[99]Mugisha S, Zhou H. Identifying optimal targets of network attack by belief propagation [J]. Phys Rev E, 2016, 94(1): 012305.
[100]Zhou H. Spin glass approach to the feedback vertex set problem [J]. Eur Phys J B, 2013, 86(11): 1-9.
[101]Qin S-M, Ren X-L, Lü L-Y. Efficient network dismantling via node explosive percolation [J]. Commu Theor Phys, 2019, 71(6): 764.
[102]Simon M, Luptakova I D, Huraj L, et al. Combined heuristic attack strategy on complex networks [J]. Math Probl Eng, 2017, 2017: 1-9.
[103]Li Q, Liu S, Yang X. Neighborhood information-based probabilistic algorithm for network disintegration [J]. Expert Syst Appl, 2020, 139: 112853.
[104]Zdeborova L, Zhang P, Zhou H. Fast and simple decycling and dismantling of networks [J]. Sci Rep, 2016, 6(1): 1-6.
[105]Chen Y, Paul G, Havlin S, et al. Finding a better immunization strategy [J]. Phys Rev Lett, 2008, 101(5): 058701.
[106]Ren X, Gleinig N, Helbing D, et al. Generalized network dismantling [J]. Proc Natl Acad Sci USA, 2019, 116(14): 6554-6559.
[107]Deng Y, Wu J, Tan Y-J. Optimal attack strategy of complex networks based on tabu search [J]. Physica A, 2016, 442(1): 74-81.
[108]Yu Y, Deng Y, Tan S-Y, et al. Efficient disintegration strategy in directed networks based on tabu search [J]. Physica A, 2018, 507(10): 435-442.
[109]Qi M, Deng Y, Deng H, et al. Optimal disintegration strategy in multiplex networks [J]. Chaos, 2018, 28(12): 121104.
[110]Deng Y, Wu J, Qi M, et al. Optimal disintegration strategy in spatial networks with disintegration circle model [J]. Chaos, 2019, 29(6): 061102.
[111]Lozano M, Garciamartinez C, Rodriguez F J, et al. Optimizing network attacks by artificial bee colony [J]. Inf Sci, 2017, 377: 30-50.
[112]Deng Y, Wu J, Xiao Y, et al. Optimal disintegration strategy with heterogeneous costs in complex networks [J]. IEEE Trans Syst Man Cybern Syst, 2020, 50(8): 2905-2913.
[113]Zhou Y, Hao J, Glover F. Memetic search for identifying critical nodes in sparse graphs [J]. IEEE Trans Cybern, 2019, 49(10): 3699-3712.
[114]Purevsuren D, Cui G, Win N N H, et al. Heuristic algorithm for identifying critical nodes in graphs [J]. Adv Comput Sci Int J, 2016, 5(3): 1-4.
[115]Fan C, Zeng L, Sun Y, et al. Finding key players in complex networks through deep reinforcement learning [J]. Nature Mach Intell, 2020, 2: 317–324.
[116]Wang Z G, Deng Y, Wang Z, et al. Disintegrating spatial networks based on region centrality [J]. Chaos, 2021, 31(6): 061101.
[117]Qi M Z, Bai Y, Li X H, et al. Optimal disintegration strategy in multiplex networks under layer node-based attack [J]. Appl Sci-Basel, 2019, 9(19): 3968.
[118]郭强, 殷冉冉, 刘建国. 基于TOPSIS的时序网络节点重要性研究 [J]. 电子科技大学学报, 2019, 48(2): 296-300.
Gou Q, Yin R R, Liu J G. Node importance identification for temporal networks via the TOPSIS method [J]. J Univ Electron Sci Technol Chin, 2019, 48(2): 296-300.
[119]梁耀洲, 郭强, 殷冉冉, 等. 基于排名聚合的时序网络节点重要性研究 [J]. 电子科技大学学报, 2020, 49(4): 519-523.
Liang Y Z, Guo Q, Yin R R, et al. Node importance identification for temporal network based on ranking aggregation [J]. J Univ Electron Sci Technol Chin, 2020, 49(4): 519-523.
[120]杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究 [J]. 物理学报, 2018, 67(4): 279-286.
Yang J N, Liu J G, Guo Q. Node importance idenfication for temporal network based on inter-layer similarity [J]. Acta Phys Sin, 2018, 67(4): 279-286.
[121]Peng R, Wu D, Sun M, et al. An attack-defense game on interdependent networks [J]. J Oper Res Soc, 2020: 1-11.
[122]Li Y-P, Tan S-Y, Deng Y, et al. Attacker-defender game from a network science perspective [J]. Chaos, 2018, 28(5): 051102.
[123]Li Y, Deng Y, Xiao Y, et al. Attack and defense strategies in complex networks based on game theory [J]. J Syst Sci Complex, 2019, 32(6): 1630-1640.