cs.AI updates on arXiv.org 10月14日 12:22
长距离图波波神经网络提升图学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出长距离图波波神经网络,通过分解波滤波器为局部和全局组件,有效捕捉长距离交互信息,在长距离基准测试中表现优异。

arXiv:2509.06743v3 Announce Type: replace-cross Abstract: Modeling long-range interactions, the propagation of information across distant parts of a graph, is a central challenge in graph machine learning. Graph wavelets, inspired by multi-resolution signal processing, provide a principled way to capture both local and global structures. However, existing wavelet-based graph neural networks rely on finite-order polynomial approximations, which limit their receptive fields and hinder long-range propagation. We propose Long-Range Graph Wavelet Networks (LR-GWN), which decompose wavelet filters into complementary local and global components. Local aggregation is handled with efficient low-order polynomials, while long-range interactions are captured through a flexible spectral-domain parameterization. This hybrid design unifies short- and long-distance information flow within a principled wavelet framework. Experiments show that LR-GWN achieves state-of-the-art performance among wavelet-based methods on long-range benchmarks, while remaining competitive on short-range datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图学习 长距离交互 图波波网络 神经网络 长距离基准测试
相关文章