cs.AI updates on arXiv.org 10月14日
工业环境物体检测:数据合成策略研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对复杂工业环境如海上石油平台的物体检测模型训练中数据稀缺和高成本问题,提出了一种结合程序渲染和AI驱动的视频生成的混合数据合成方法。实验结果表明,该方法能够有效提高检测模型的准确性和可靠性。

arXiv:2508.17468v2 Announce Type: replace-cross Abstract: This paper addresses the challenges of data scarcity and high acquisition costs in training robust object detection models for complex industrial environments, such as offshore oil platforms. Data collection in these hazardous settings often limits the development of autonomous inspection systems. To mitigate this issue, we propose a hybrid data synthesis pipeline that integrates procedural rendering and AI-driven video generation. The approach uses BlenderProc to produce photorealistic images with domain randomization and NVIDIA's Cosmos-Predict2 to generate physically consistent video sequences with temporal variation. A YOLO-based detector trained on a composite dataset, combining real and synthetic data, outperformed models trained solely on real images. A 1:1 ratio between real and synthetic samples achieved the highest accuracy. The results demonstrate that synthetic data generation is a viable, cost-effective, and safe strategy for developing reliable perception systems in safety-critical and resource-constrained industrial applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物体检测 数据合成 工业环境 AI驱动 模型训练
相关文章