cs.AI updates on arXiv.org 10月14日 12:21
LLM推理性能优化:思考最优缩放策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对大型语言模型推理性能的优化策略,即思考最优缩放策略。研究发现,过长的思维链(CoT)长度可能降低模型在特定领域的推理能力,并提出了一种基于种子数据的小样本学习方法,以实现模型推理能力的提升。

arXiv:2502.18080v2 Announce Type: replace-cross Abstract: Recent studies have shown that making a model spend more time thinking through longer Chain of Thoughts (CoTs) enables it to gain significant improvements in complex reasoning tasks. While current researches continue to explore the benefits of increasing test-time compute by extending the CoT lengths of Large Language Models (LLMs), we are concerned about a potential issue hidden behind the current pursuit of test-time scaling: Would excessively scaling the CoT length actually bring adverse effects to a model's reasoning performance? Our explorations on mathematical reasoning tasks reveal an unexpected finding that scaling with longer CoTs can indeed impair the reasoning performance of LLMs in certain domains. Moreover, we discover that there exists an optimal scaled length distribution that differs across different domains. Based on these insights, we propose a Thinking-Optimal Scaling strategy. Our method first uses a small set of seed data with varying response length distributions to teach the model to adopt different reasoning efforts for deep thinking. Then, the model selects its shortest correct response under different reasoning efforts on additional problems for self-improvement. Our self-improved models built upon Qwen2.5-32B-Instruct outperform other distillation-based 32B o1-like models across various math benchmarks, and achieve performance on par with the teacher model QwQ-32B-Preview that produces the seed data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 推理性能 思维链(CoT) 优化策略 种子数据
相关文章