cs.AI updates on arXiv.org 10月14日 12:20
无额外修改的随机算法在复合优化问题中实现最优复杂度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了具有重尾噪声的复合优化问题,提出了一种无需梯度裁剪或归一化等额外修改的随机算法,证明了该算法在复合优化问题中可以达到最优复杂度。

arXiv:2510.11676v1 Announce Type: cross Abstract: We study convex composite optimization problems, where the objective function is given by the sum of a prox-friendly function and a convex function whose subgradients are estimated under heavy-tailed noise. Existing work often employs gradient clipping or normalization techniques in stochastic first-order methods to address heavy-tailed noise. In this paper, we demonstrate that a vanilla stochastic algorithm -- without additional modifications such as clipping or normalization -- can achieve optimal complexity for these problems. In particular, we establish that an accelerated stochastic proximal subgradient method achieves a first-order oracle complexity that is universally optimal for smooth, weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization under heavy-tailed noise. Numerical experiments are further provided to validate our theoretical results.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

复合优化 随机算法 最优复杂度 重尾噪声 梯度裁剪
相关文章