cs.AI updates on arXiv.org 10月14日 12:20
基于概念解释的深度神经网络可解释性提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FACE的框架,通过结合非负矩阵分解与KL散度正则化,确保深度神经网络中概念提取与决策过程的准确对应,以增强模型的可解释性。

arXiv:2510.11675v1 Announce Type: cross Abstract: Interpreting deep neural networks through concept-based explanations offers a bridge between low-level features and high-level human-understandable semantics. However, existing automatic concept discovery methods often fail to align these extracted concepts with the model's true decision-making process, thereby compromising explanation faithfulness. In this work, we propose FACE (Faithful Automatic Concept Extraction), a novel framework that augments Non-negative Matrix Factorization (NMF) with a Kullback-Leibler (KL) divergence regularization term to ensure alignment between the model's original and concept-based predictions. Unlike prior methods that operate solely on encoder activations, FACE incorporates classifier supervision during concept learning, enforcing predictive consistency and enabling faithful explanations. We provide theoretical guarantees showing that minimizing the KL divergence bounds the deviation in predictive distributions, thereby promoting faithful local linearity in the learned concept space. Systematic evaluations on ImageNet, COCO, and CelebA datasets demonstrate that FACE outperforms existing methods across faithfulness and sparsity metrics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度神经网络 可解释性 概念提取 KL散度正则化 模型解释
相关文章