cs.AI updates on arXiv.org 10月14日 12:20
AdaKD:面向LLM的动态知识蒸馏框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为AdaKD的面向大型语言模型的知识蒸馏方法,通过动态调整蒸馏过程和温度策略,显著提升知识传递效果。

arXiv:2510.11615v1 Announce Type: cross Abstract: Knowledge distillation (KD) is a key technique for compressing large-scale language models (LLMs), yet prevailing logit-based methods typically employ static strategies that are misaligned with the dynamic learning process of student models. These methods typically treat all tokens indiscriminately and apply a single, fixed temperature, resulting in suboptimal knowledge transfer. To address these limitations, we propose LLM-Oriented Token-Adaptive Knowledge Distillation (AdaKD), a novel framework that adapts the distillation process to the real-time learning state of each token. AdaKD consists of two synergistic modules driven by a unified token difficulty metric. First, our Loss-Driven Adaptive Token Focusing (LATF) module dynamically adjusts the distillation focus by monitoring the student's learning stability, concentrating computational resources on the most valuable tokens at each training phase. Second, we introduce Inverse Difficulty Temperature Scaling (IDTS), a counterintuitive yet effective token-level temperature strategy. It employs low temperatures for difficult tokens for targeted error correction, and high temperatures for easy tokens to encourage students to learn from the teacher's complete and smooth output distribution, thereby enhancing generalization. As a plug-and-play framework, AdaKD can consistently improve the performance of various distillation methods on multiple model architectures and benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识蒸馏 LLM 动态学习 模型压缩 AdaKD
相关文章