cs.AI updates on arXiv.org 10月14日
多智能体强化学习在空中格斗模拟中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型的3D多智能体空中格斗环境和分层多智能体强化学习框架,通过结合异构智能体动力学、课程学习、联赛玩法和新的训练算法,提高复杂空战场景下的学习效率和战斗性能。

arXiv:2510.11474v1 Announce Type: cross Abstract: Achieving mission objectives in a realistic simulation of aerial combat is highly challenging due to imperfect situational awareness and nonlinear flight dynamics. In this work, we introduce a novel 3D multi-agent air combat environment and a Hierarchical Multi-Agent Reinforcement Learning framework to tackle these challenges. Our approach combines heterogeneous agent dynamics, curriculum learning, league-play, and a newly adapted training algorithm. To this end, the decision-making process is organized into two abstraction levels: low-level policies learn precise control maneuvers, while high-level policies issue tactical commands based on mission objectives. Empirical results show that our hierarchical approach improves both learning efficiency and combat performance in complex dogfight scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体强化学习 空中格斗模拟 课程学习 联赛玩法 训练算法
相关文章