cs.AI updates on arXiv.org 10月14日 12:20
Chatbot网络流量分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文深入研究了ChatGPT、Copilot和Gemini等三大聊天机器人通过Android移动应用进行文本和图像生成时的网络流量。通过收集和标记数据集,分析其流量特征,并与常规消息应用进行对比,揭示了聊天机器人在网络使用中的独特性。

arXiv:2510.11269v1 Announce Type: cross Abstract: Generative AI (GenAI) chatbots are now pervasive in digital ecosystems, yet their network traffic remains largely underexplored. This study presents an in-depth investigation of traffic generated by three leading chatbots (ChatGPT, Copilot, and Gemini) when accessed via Android mobile apps for both text and image generation. Using a dedicated capture architecture, we collect and label two complementary workloads: a 60-hour generic dataset with unconstrained prompts, and a controlled dataset built from identical prompts across GenAI apps and replicated via conventional messaging apps to enable one-to-one comparisons. This dual design allows us to address practical research questions on the distinctiveness of GenAI traffic, its differences from widely deployed traffic categories, and its novel implications for network usage. To this end, we provide fine-grained traffic characterization at trace, flow, and protocol levels, and model packet-sequence dynamics with Multimodal Markov Chains. Our analyses reveal app- and content-specific traffic patterns, particularly in volume, uplink/downlink profiles, and protocol adoption. We highlight the predominance of TLS, with Gemini extensively leveraging QUIC, ChatGPT exclusively using TLS 1.3, and app- and content-specific Server Name Indication (SNI) values. A payload-based occlusion analysis quantifies SNI's contribution to classification: masking it reduces F1-score by up to 20 percentage points in GenAI app traffic classification. Finally, compared with conventional messaging apps when carrying the same content, GenAI chatbots exhibit unique traffic characteristics, highlighting new stress factors for mobile networks, such as sustained upstream activity, with direct implications for network monitoring and management. We publicly release the datasets to support reproducibility and foster extensions to other use cases.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

聊天机器人 网络流量 数据集 流量分析 移动网络
相关文章