cs.AI updates on arXiv.org 10月14日 12:19
基于LLM代理的动态信息治理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于LLM代理的动态信息治理框架,强调从二元访问控制转向信息流治理,通过多维度情境评估和自适应响应制定机制,旨在解决传统访问控制机制在自主代理环境中的不足。

arXiv:2510.11108v1 Announce Type: cross Abstract: The autonomy and contextual complexity of LLM-based agents render traditional access control (AC) mechanisms insufficient. Static, rule-based systems designed for predictable environments are fundamentally ill-equipped to manage the dynamic information flows inherent in agentic interactions. This position paper argues for a paradigm shift from binary access control to a more sophisticated model of information governance, positing that the core challenge is not merely about permission, but about governing the flow of information. We introduce Agent Access Control (AAC), a novel framework that reframes AC as a dynamic, context-aware process of information flow governance. AAC operates on two core modules: (1) multi-dimensional contextual evaluation, which assesses not just identity but also relationships, scenarios, and norms; and (2) adaptive response formulation, which moves beyond simple allow/deny decisions to shape information through redaction, summarization, and paraphrasing. This vision, powered by a dedicated AC reasoning engine, aims to bridge the gap between human-like nuanced judgment and scalable Al safety, proposing a new conceptual lens for future research in trustworthy agent design.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信息治理 访问控制 LLM代理
相关文章