cs.AI updates on arXiv.org 10月14日
LLM水印验证漏洞及攻击手段揭秘
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了LLM水印验证的漏洞,指出水印仿冒攻击的可能性,并提出了相应的攻击方法。文章强调,当前技术存在安全缺口,呼吁转向更可靠的水印识别技术。

arXiv:2510.10987v1 Announce Type: cross Abstract: The promise of LLM watermarking rests on a core assumption that a specific watermark proves authorship by a specific model. We demonstrate that this assumption is dangerously flawed. We introduce the threat of watermark spoofing, a sophisticated attack that allows a malicious model to generate text containing the authentic-looking watermark of a trusted, victim model. This enables the seamless misattribution of harmful content, such as disinformation, to reputable sources. The key to our attack is repurposing watermark radioactivity, the unintended inheritance of data patterns during fine-tuning, from a discoverable trait into an attack vector. By distilling knowledge from a watermarked teacher model, our framework allows an attacker to steal and replicate the watermarking signal of the victim model. This work reveals a critical security gap in text authorship verification and calls for a paradigm shift towards technologies capable of distinguishing authentic watermarks from expertly imitated ones. Our code is available at https://github.com/hsannn/ditto.git.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM水印 水印验证 安全漏洞 攻击手段 水印仿冒
相关文章