cs.AI updates on arXiv.org 10月14日
ToMCLIP:多语言CLIP的拓扑对齐框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ToMCLIP,一种基于拓扑对齐的多语言CLIP框架,通过拓扑保形约束改善跨模态对齐,提高多语言表示的结构一致性和零样本准确性。

arXiv:2510.10889v1 Announce Type: cross Abstract: Contrastive Vision-Language Models (VLMs) have demonstrated strong zero-shot capabilities. However, their cross-modal alignment remains biased toward English due to limited multilingual multimodal data. Recent multilingual extensions have alleviated this gap but enforce instance-level alignment while neglecting the global geometry of the shared embedding space. We address this problem by introducing ToMCLIP (Topological Alignment for Multilingual CLIP), a topology-aware framework aligning embedding spaces with topology-preserving constraints. The proposed method applies persistent homology to define a topological alignment loss and approximates persistence diagram with theoretical error bounds using graph sparsification strategy. This work validates the proposed approach, showing enhanced structural coherence of multilingual representations, higher zero-shot accuracy on the CIFAR-100, and stronger multilingual retrieval performance on the xFlickr&CO. Beyond VLMs, the proposed approach provides a general method for incorporating topological alignment into representation learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多语言CLIP 拓扑对齐 跨模态对齐 表示学习 零样本准确性
相关文章