cs.AI updates on arXiv.org 10月14日 12:19
GRIP:跨域导航的统一框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为GRIP的跨域导航框架,通过结合感知、符号推理和空间规划,实现了在动态、杂乱和语义复杂环境中的高效导航。GRIP具有三个可扩展变体,并在AI2-THOR和RoboTHOR基准测试中展现出优越的性能。

arXiv:2510.10865v1 Announce Type: cross Abstract: Robots navigating dynamic, cluttered, and semantically complex environments must integrate perception, symbolic reasoning, and spatial planning to generalize across diverse layouts and object categories. Existing methods often rely on static priors or limited memory, constraining adaptability under partial observability and semantic ambiguity. We present GRIP, Grid-based Relay with Intermediate Planning, a unified, modular framework with three scalable variants: GRIP-L (Lightweight), optimized for symbolic navigation via semantic occupancy grids; GRIP-F (Full), supporting multi-hop anchor chaining and LLM-based introspection; and GRIP-R (Real-World), enabling physical robot deployment under perceptual uncertainty. GRIP integrates dynamic 2D grid construction, open-vocabulary object grounding, co-occurrence-aware symbolic planning, and hybrid policy execution using behavioral cloning, D* search, and grid-conditioned control. Empirical results on AI2-THOR and RoboTHOR benchmarks show that GRIP achieves up to 9.6% higher success rates and over $2\times$ improvement in path efficiency (SPL and SAE) on long-horizon tasks. Qualitative analyses reveal interpretable symbolic plans in ambiguous scenes. Real-world deployment on a Jetbot further validates GRIP's generalization under sensor noise and environmental variation. These results position GRIP as a robust, scalable, and explainable framework bridging simulation and real-world navigation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GRIP 跨域导航 符号推理 空间规划 AI2-THOR
相关文章