cs.AI updates on arXiv.org 10月14日
Agentic RAG系统软件测试自动化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用Agentic Retrieval-Augmented Generation(RAG)系统实现软件测试自动化的方法,结合自主AI代理与混合向量-图知识系统,自动化测试计划、用例及QE度量生成。方法借助LLM如Gemini和Mistral、多智能体编排及增强情境化,显著提高测试准确性,实验证明可缩短测试时间85%,提高测试套件效率85%,预期节省35%成本,加速上线时间2个月。

arXiv:2510.10824v1 Announce Type: cross Abstract: We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for Quality Engineering (QE) artifact creation. We combine autonomous AI agents with hybrid vector-graph knowledge systems to automate test plan, case, and QE metric generation. Our approach addresses traditional software testing limitations by leveraging LLMs such as Gemini and Mistral, multi-agent orchestration, and enhanced contextualization. The system achieves remarkable accuracy improvements from 65% to 94.8% while ensuring comprehensive document traceability throughout the quality engineering lifecycle. Experimental validation of enterprise Corporate Systems Engineering and SAP migration projects demonstrates an 85% reduction in testing timeline, an 85% improvement in test suite efficiency, and projected 35% cost savings, resulting in a 2-month acceleration of go-live.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件测试 自动化 Agentic RAG LLM 测试效率
相关文章