cs.AI updates on arXiv.org 10月14日 12:19
多目标LLM交互优化动态建模框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种用于模拟迭代大型语言模型(LLM)多目标优化动态的通用随机微分方程框架。通过显式扩散项捕捉LLM响应的内在随机性,并利用干扰矩阵公式揭示竞争目标之间的系统干扰模式。以迭代代码生成作为概念验证,验证了该理论框架,并分析了400个会话,结果表明策略依赖的收敛行为,收敛速率在0.33到1.29之间,平衡方法的预测精度达到R2 = 0.74。

arXiv:2510.10739v1 Announce Type: cross Abstract: We introduce a general stochastic differential equation framework for modelling multiobjective optimization dynamics in iterative Large Language Model (LLM) interactions. Our framework captures the inherent stochasticity of LLM responses through explicit diffusion terms and reveals systematic interference patterns between competing objectives via an interference matrix formulation. We validate our theoretical framework using iterative code generation as a proof-of-concept application, analyzing 400 sessions across security, efficiency, and functionality objectives. Our results demonstrate strategy-dependent convergence behaviors with rates ranging from 0.33 to 1.29, and predictive accuracy achieving R2 = 0.74 for balanced approaches. This work proposes the feasibility of dynamical systems analysis for multi-objective LLM interactions, with code generation serving as an initial validation domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 多目标优化 随机微分方程 干扰矩阵 代码生成
相关文章