cs.AI updates on arXiv.org 10月14日 12:19
改进通用ASR性能以助力L2学习者
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对通用ASR在L2学习者中的表现不佳问题,提出两种策略: proficiency-aware multitask learning 和 targeted augmentation,有效降低错误率,缩小学习者能力差距,促进公平的ASR应用。

arXiv:2510.10738v1 Announce Type: cross Abstract: General-purpose ASR underperforms for atypical speakers, such as L2 learners, reinforcing bias and limiting use in education and accessibility. Using the CEFR-graded Speak and Improve corpus, we show that naive fine-tuning of Whisper reduces average WER but simultaneously widens disparities and disproportionately harms lower-level learners. To address this, we propose two strategies: (i) proficiency-aware multitask learning, jointly optimizing ASR with proficiency classification, and (ii) targeted augmentation, applying spectrogram masking to low-proficiency speech to counter imbalance. These approaches reduce WER by up to 29.4 percent (relative) and insertion/deletion errors by as much as 58.6 percent (relative). Crucially, despite the severe imbalance of the dataset reflecting real-world distributions, both strategies consistently narrow proficiency gaps, advancing equitable ASR for L2 learners.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ASR L2学习者 多任务学习 语音增强 教育公平
相关文章