cs.AI updates on arXiv.org 10月14日 12:18
AGENTIQL:基于代理的多专家框架提升SQL生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为AGENTIQL的基于代理的多专家框架,通过结合推理代理、编码代理和列选择优化步骤,有效提升了文本到SQL的生成准确性和可解释性,并在Spider基准测试中达到86.07%的EX,缩小了与GPT-4的差距。

arXiv:2510.10661v1 Announce Type: cross Abstract: LLMs have advanced text-to-SQL generation, yet monolithic architectures struggle with complex reasoning and schema diversity. We propose AGENTIQL, an agent-inspired multi-expert framework that combines a reasoning agent for question decomposition, a coding agent for sub-query generation, and a refinement step for column selection. An adaptive router further balances efficiency and accuracy by selecting between our modular pipeline and a baseline parser. Several steps in the pipeline can be executed in parallel, making the framework scalable to larger workloads. Evaluated on the Spider benchmark, AGENTIQL improves execution accuracy and interpretability and achieves up to 86.07\% EX with 14B models using the Planner&Executor merging strategy. The attained performance is contingent upon the efficacy of the routing mechanism, thereby narrowing the gap to GPT-4-based SOTA (89.65% EX) while using much smaller open-source LLMs. Beyond accuracy, AGENTIQL enhances transparency by exposing intermediate reasoning steps, offering a robust, scalable, and interpretable approach to semantic parsing.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AGENTIQL 文本到SQL生成 多专家框架 推理代理 语义解析
相关文章