cs.AI updates on arXiv.org 10月14日 12:18
音频驱动谈头生成:DEMO框架提升视频真实性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为DEMO的音频驱动谈头生成框架,通过精细的运动解耦和基于流的生成模型,显著提升了视频的真实性和动作准确性。

arXiv:2510.10650v1 Announce Type: cross Abstract: Audio-driven talking-head generation has advanced rapidly with diffusion-based generative models, yet producing temporally coherent videos with fine-grained motion control remains challenging. We propose DEMO, a flow-matching generative framework for audio-driven talking-portrait video synthesis that delivers disentangled, high-fidelity control of lip motion, head pose, and eye gaze. The core contribution is a motion auto-encoder that builds a structured latent space in which motion factors are independently represented and approximately orthogonalized. On this disentangled motion space, we apply optimal-transport-based flow matching with a transformer predictor to generate temporally smooth motion trajectories conditioned on audio. Extensive experiments across multiple benchmarks show that DEMO outperforms prior methods in video realism, lip-audio synchronization, and motion fidelity. These results demonstrate that combining fine-grained motion disentanglement with flow-based generative modeling provides a powerful new paradigm for controllable talking-head video synthesis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频驱动 谈头生成 视频真实性 运动解耦 生成模型
相关文章