cs.AI updates on arXiv.org 10月14日
GLOFNet:冰川湖突发洪水监测与预测的多模态数据集
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GLOFNet,一个针对喜马拉雅地区冰川湖突发洪水(GLOFs)监测和预测的多模态数据集。该数据集整合了卫星图像、冰川动力学和地表温度数据,通过预处理和跨模态协调,旨在支持未来冰川灾害预测研究。

arXiv:2510.10546v1 Announce Type: cross Abstract: Glacial Lake Outburst Floods (GLOFs) are rare but destructive hazards in high mountain regions, yet predictive research is hindered by fragmented and unimodal data. Most prior efforts emphasize post-event mapping, whereas forecasting requires harmonized datasets that combine visual indicators with physical precursors. We present GLOFNet, a multimodal dataset for GLOF monitoring and prediction, focused on the Shisper Glacier in the Karakoram. It integrates three complementary sources: Sentinel-2 multispectral imagery for spatial monitoring, NASA ITS_LIVE velocity products for glacier kinematics, and MODIS Land Surface Temperature records spanning over two decades. Preprocessing included cloud masking, quality filtering, normalization, temporal interpolation, augmentation, and cyclical encoding, followed by harmonization across modalities. Exploratory analysis reveals seasonal glacier velocity cycles, long-term warming of ~0.8 K per decade, and spatial heterogeneity in cryospheric conditions. The resulting dataset, GLOFNet, is publicly available to support future research in glacial hazard prediction. By addressing challenges such as class imbalance, cloud contamination, and coarse resolution, GLOFNet provides a structured foundation for benchmarking multimodal deep learning approaches to rare hazard prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

冰川湖突发洪水 GLOFNet 多模态数据集 冰川灾害预测 喜马拉雅地区
相关文章