cs.AI updates on arXiv.org 10月14日
高效能机器人控制新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合脉冲神经网络和深度强化学习的新框架,用于解决资源受限环境下的高维连续控制任务,实现节能与高性能的平衡。

arXiv:2510.10516v1 Announce Type: cross Abstract: Energy-efficient and high-performance motor control remains a critical challenge in robotics, particularly for high-dimensional continuous control tasks with limited onboard resources. While Deep Reinforcement Learning (DRL) has achieved remarkable results, its computational demands and energy consumption limit deployment in resource-constrained environments. This paper introduces a novel framework combining population-coded Spiking Neural Networks (SNNs) with DRL to address these challenges. Our approach leverages the event-driven, asynchronous computation of SNNs alongside the robust policy optimization capabilities of DRL, achieving a balance between energy efficiency and control performance. Central to this framework is the Population-coded Spiking Actor Network (PopSAN), which encodes high-dimensional observations into neuronal population activities and enables optimal policy learning through gradient-based updates. We evaluate our method on the Isaac Gym platform using the PixMC benchmark with complex robotic manipulation tasks. Experimental results on the Franka robotic arm demonstrate that our approach achieves energy savings of up to 96.10% compared to traditional Artificial Neural Networks (ANNs) while maintaining comparable control performance. The trained SNN policies exhibit robust finger position tracking with minimal deviation from commanded trajectories and stable target height maintenance during pick-and-place operations. These results position population-coded SNNs as a promising solution for energy-efficient, high-performance robotic control in resource-constrained applications, paving the way for scalable deployment in real-world robotics systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脉冲神经网络 深度强化学习 机器人控制 节能 资源受限
相关文章