cs.AI updates on arXiv.org 10月14日 12:18
基于模拟决策框架的医学图像分割标注方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的医学图像分割标注方法,通过模拟临床小组决策过程,学习标注者风格,并在模拟咨询模块中生成最终分割结果,在CBCT和MRI数据集上取得优异表现。

arXiv:2510.10462v1 Announce Type: cross Abstract: Medical image segmentation annotation suffers from inter-rater variability (IRV) due to differences in annotators' expertise and the inherent blurriness of medical images. Standard approaches that simply average expert labels are flawed, as they discard the valuable clinical uncertainty revealed in disagreements. We introduce a fundamentally new approach with our group decision simulation framework, which works by mimicking the collaborative decision-making process of a clinical panel. Under this framework, an Expert Signature Generator (ESG) learns to represent individual annotator styles in a unique latent space. A Simulated Consultation Module (SCM) then intelligently generates the final segmentation by sampling from this space. This method achieved state-of-the-art results on challenging CBCT and MRI datasets (92.11% and 90.72% Dice scores). By treating expert disagreement as a useful signal instead of noise, our work provides a clear path toward more robust and trustworthy AI systems for healthcare.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学图像分割 标注方法 决策模拟 临床应用
相关文章