arXiv:2510.10433v1 Announce Type: cross Abstract: Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder in aging populations, posing a significant and escalating burden on global healthcare systems. While Multi-Tusk Learning (MTL) has emerged as a powerful computational paradigm for modeling longitudinal AD data, existing frameworks do not account for the time-varying nature of feature correlations. To address this limitation, we propose a novel MTL framework, named Feature Similarity Laplacian graph Multi-Task Learning (MTL-FSL). Our framework introduces a novel Feature Similarity Laplacian (FSL) penalty that explicitly models the time-varying relationships between features. By simultaneously considering temporal smoothness among tasks and the dynamic correlations among features, our model enhances both predictive accuracy and biological interpretability. To solve the non-smooth optimization problem arising from our proposed penalty terms, we adopt the Alternating Direction Method of Multipliers (ADMM) algorithm. Experiments conducted on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed MTL-FSL framework achieves state-of-the-art performance, outperforming various baseline methods. The implementation source can be found at https://github.com/huatxxx/MTL-FSL.
