cs.AI updates on arXiv.org 10月14日
UF-RNN:机器人不确定环境下的预测学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为UF-RNN的机器人学习模型,通过结合时间序列预测与主动“前瞻”模块,在不确定环境下提高机器人操作效果。模型在门开任务中展现出优越性,表明其在模仿学习框架中融入不确定性驱动的前瞻性可以增强机器人应对不确定性的能力。

arXiv:2510.10217v1 Announce Type: cross Abstract: Training robots to operate effectively in environments with uncertain states, such as ambiguous object properties or unpredictable interactions, remains a longstanding challenge in robotics. Imitation learning methods typically rely on successful examples and often neglect failure scenarios where uncertainty is most pronounced. To address this limitation, we propose the Uncertainty-driven Foresight Recurrent Neural Network (UF-RNN), a model that combines standard time-series prediction with an active "Foresight" module. This module performs internal simulations of multiple future trajectories and refines the hidden state to minimize predicted variance, enabling the model to selectively explore actions under high uncertainty. We evaluate UF-RNN on a door-opening task in both simulation and a real-robot setting, demonstrating that, despite the absence of explicit failure demonstrations, the model exhibits robust adaptation by leveraging self-induced chaotic dynamics in its latent space. When guided by the Foresight module, these chaotic properties stimulate exploratory behaviors precisely when the environment is ambiguous, yielding improved success rates compared to conventional stochastic RNN baselines. These findings suggest that integrating uncertainty-driven foresight into imitation learning pipelines can significantly enhance a robot's ability to handle unpredictable real-world conditions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人学习 不确定性驱动 模仿学习 预测模型 环境适应
相关文章