cs.AI updates on arXiv.org 10月14日 12:18
端到端Wasserstein DRC框架提升控制性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的端到端有限时域Wasserstein分布鲁棒控制(DRC)框架,通过将各向异性Wasserstein度量学习与下游控制任务相结合,以优化控制策略,提高控制性能。

arXiv:2510.10214v1 Announce Type: cross Abstract: Wasserstein distributionally robust control (DRC) recently emerges as a principled paradigm for handling uncertainty in stochastic dynamical systems. However, it constructs data-driven ambiguity sets via uniform distribution shifts before sequentially incorporating them into downstream control synthesis. This segregation between ambiguity set construction and control objectives inherently introduces a structural misalignment, which undesirably leads to conservative control policies with sub-optimal performance. To address this limitation, we propose a novel end-to-end finite-horizon Wasserstein DRC framework that integrates the learning of anisotropic Wasserstein metrics with downstream control tasks in a closed-loop manner, thus enabling ambiguity sets to be systematically adjusted along performance-critical directions and yielding more effective control policies. This framework is formulated as a bilevel program: the inner level characterizes dynamical system evolution under DRC, while the outer level refines the anisotropic metric leveraging control-performance feedback across a range of initial conditions. To solve this program efficiently, we develop a stochastic augmented Lagrangian algorithm tailored to the bilevel structure. Theoretically, we prove that the learned ambiguity sets preserve statistical finite-sample guarantees under a novel radius adjustment mechanism, and we establish the well-posedness of the bilevel formulation by demonstrating its continuity with respect to the learnable metric. Furthermore, we show that the algorithm converges to stationary points of the outer level problem, which are statistically consistent with the optimal metric at a non-asymptotic convergence rate. Experiments on both numerical and inventory control tasks verify that the proposed framework achieves superior closed-loop performance and robustness compared against state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Wasserstein DRC 控制策略 控制性能 各向异性Wasserstein度量 鲁棒控制
相关文章