cs.AI updates on arXiv.org 10月14日
BILLY:多LLM协作提升语言模型创造力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出BILLY框架,通过模型内提取和融合多个角色向量,实现多LLM协作优势,降低计算成本和推理延迟,提升语言模型创造力。

arXiv:2510.10157v1 Announce Type: cross Abstract: Multi-LLM systems enhance the creativity of large language models by simulating human collective intelligence but suffer from significant drawbacks, such as high computational costs and inference latency. To address these limitations, we propose BILLY (BlendIng persona vectors for Large Language model creativitY), a training-free framework that captures the benefits of multi-LLM collaboration, i.e. inducing diverse perspectives and specialized expertise, within a single model. BILLY operates by extracting and blending multiple distinct persona vectors directly in the model's activation space. We steer the model's generation process with this merged vector while inference, enabling multi-perspective output without explicit multi-LLM communication. Our experiments across creativity-oriented benchmarks demonstrate that BILLY surpasses single model prompting and traditional multi-LLM approaches, while substantially reducing inference time and computational costs. Our analyses further reveal that distinct persona vectors can be blended to achieve both effective control over complementary aspects of generation and greater interpretability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BILLY框架 多LLM协作 语言模型创造力 计算成本 推理延迟
相关文章