cs.AI updates on arXiv.org 10月14日
基于LCP的N:M稀疏模型优化方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PermLLM的N:M稀疏模型优化框架,通过引入可学习的通道排列(LCP)技术,有效提升了模型性能。实验表明,PermLLM在优化N:M稀疏模型方面具有显著优势。

arXiv:2510.10136v1 Announce Type: cross Abstract: Channel permutation is a powerful technique for enhancing the accuracy of N:M sparse models by reordering the channels of weight matrices to prioritize the retention of important weights. However, traditional channel permutation methods rely on handcrafted quality metrics, which often fail to accurately capture the true impact of pruning on model performance. To address this limitation, we propose PermLLM, a novel post-training pruning framework that introduces learnable channel permutation (LCP) for N:M sparsity. LCP leverages Sinkhorn normalization to transform discrete permutation matrices into differentiable soft permutation matrices, enabling end-to-end optimization. Additionally, PermLLM incorporates an efficient block-wise channel permutation strategy, which significantly reduces the number of learnable parameters and computational complexity. PermLLM seamlessly integrates with existing one-shot pruning methods to adaptively optimize channel permutations, effectively mitigating pruning-induced errors. Extensive experiments on the LLaMA series, Qwen, and OPT models demonstrate that PermLLM achieves superior performance in optimizing N:M sparse models. The code is available at https://github.com/lanchengzou/PermLLM.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

N:M稀疏模型 通道排列 模型优化 PermLLM LCP
相关文章