cs.AI updates on arXiv.org 10月14日 12:17
CLMN:神经网络与符号推理结合的NLP新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CLMN的神经网络与符号推理结合的NLP新框架,通过将概念表示为可读的嵌入,并应用模糊逻辑推理学习自适应交互规则,提高了NLP系统的准确性和可解释性。

arXiv:2510.10063v1 Announce Type: cross Abstract: Deep learning has advanced NLP, but interpretability remains limited, especially in healthcare and finance. Concept bottleneck models tie predictions to human concepts in vision, but NLP versions either use binary activations that harm text representations or latent concepts that weaken semantics, and they rarely model dynamic concept interactions such as negation and context. We introduce the Concept Language Model Network (CLMN), a neural-symbolic framework that keeps both performance and interpretability. CLMN represents concepts as continuous, human-readable embeddings and applies fuzzy-logic reasoning to learn adaptive interaction rules that state how concepts affect each other and the final decision. The model augments original text features with concept-aware representations and automatically induces interpretable logic rules. Across multiple datasets and pre-trained language models, CLMN achieves higher accuracy than existing concept-based methods while improving explanation quality. These results show that integrating neural representations with symbolic reasoning in a unified concept space can yield practical, transparent NLP systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CLMN NLP 神经网络 符号推理 可解释性
相关文章