cs.AI updates on arXiv.org 10月14日 12:16
CHUG:首个大规模UGC-HDR视频质量数据集
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了CHUG数据集,旨在解决现有HDR视频质量评估数据集对UGC-HDR质量评估的不足,通过大规模主观研究,为UGC-HDR视频质量评估提供基准。

arXiv:2510.09879v1 Announce Type: cross Abstract: High Dynamic Range (HDR) videos enhance visual experiences with superior brightness, contrast, and color depth. The surge of User-Generated Content (UGC) on platforms like YouTube and TikTok introduces unique challenges for HDR video quality assessment (VQA) due to diverse capture conditions, editing artifacts, and compression distortions. Existing HDR-VQA datasets primarily focus on professionally generated content (PGC), leaving a gap in understanding real-world UGC-HDR degradations. To address this, we introduce CHUG: Crowdsourced User-Generated HDR Video Quality Dataset, the first large-scale subjective study on UGC-HDR quality. CHUG comprises 856 UGC-HDR source videos, transcoded across multiple resolutions and bitrates to simulate real-world scenarios, totaling 5,992 videos. A large-scale study via Amazon Mechanical Turk collected 211,848 perceptual ratings. CHUG provides a benchmark for analyzing UGC-specific distortions in HDR videos. We anticipate CHUG will advance No-Reference (NR) HDR-VQA research by offering a large-scale, diverse, and real-world UGC dataset. The dataset is publicly available at: https://shreshthsaini.github.io/CHUG/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

HDR视频 UGC-HDR 视频质量评估 CHUG数据集 主观研究
相关文章