cs.AI updates on arXiv.org 10月14日 12:15
CALM:表格数据因果发现新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为CALM的新方法,用于从表格数据中实现因果发现。该方法基于Mamba架构,结合多种证据进行因果模式分类,显著优于现有方法。

arXiv:2510.09846v1 Announce Type: cross Abstract: Causal discovery from observational data is fundamental to scientific fields like biology, where controlled experiments are often impractical. However, existing methods, including constraint-based (e.g., PC, causalMGM) and score-based approaches (e.g., NOTEARS), face significant limitations. These include an inability to resolve causal direction, restrictions to linear associations, sensitivity to violations of the faithfulness assumption, and inefficiency in searching vast hypothesis spaces. While large language models (LLMs) offer powerful reasoning capabilities, their application is hindered by a fundamental discrepancy: they are designed for text, while most causal data is tabular. To address these challenges, we introduce CALM, a novel causal analysis language model specifically designed for tabular data in complex systems. CALM leverages a Mamba-based architecture to classify causal patterns from pairwise variable relationships. It integrates a comprehensive suite of evidence, including local causal scores, conditional independence tests, and relational attributes, to capture a wide spectrum of linear, nonlinear, and conditional causal mechanisms. Trained on a diverse corpus of synthetic data (from linear, mixed, and nonlinear models) and 10 real-world biological datasets with rigorously validated causal relationships, our model ensures robustness and generalizability. Empirical evaluation demonstrates that CALM significantly outperforms existing methods in both simulation studies, achieving over 91% accuracy, and in a real-world application identifying causal factors in Hepatitis C virus progression. This work represents a significant step towards accurate and generalizable causal discovery by successfully adapting the pattern recognition capabilities of language models to the intricacies of tabular data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果发现 表格数据 CALM Mamba架构 因果模式
相关文章