cs.AI updates on arXiv.org 10月14日 12:15
利用卫星数据与深度学习提升美国西部火灾与空气质量管理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过利用NASA TEMPO卫星的实时数据及深度学习技术,展示了提升美国西部野火和空气质量管理的可能性。采用自监督深度学习系统成功区分烟雾与云层,并与不同传感方式生成的烟雾和火灾掩膜达成高度一致,显著优于现有操作产品。

arXiv:2510.09845v1 Announce Type: cross Abstract: This work demonstrates the possibilities for improving wildfire and air quality management in the western United States by leveraging the unprecedented hourly data from NASA's TEMPO satellite mission and advances in self-supervised deep learning. Here we demonstrate the efficacy of deep learning for mapping the near real-time hourly spread of wildfire fronts and smoke plumes using an innovative self-supervised deep learning-system: successfully distinguishing smoke plumes from clouds using GOES-18 and TEMPO data, strong agreement across the smoke and fire masks generated from different sensing modalities as well as significant improvement over operational products for the same cases.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NASA TEMPO卫星 深度学习 野火管理 空气质量 自监督学习
相关文章