cs.AI updates on arXiv.org 10月14日
时序提升:连续动力系统自适应时变参数化方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为时序提升的连续时间动力系统自适应时变参数化方法,通过平滑单调映射对基础流的近奇异行为进行正则化,同时保留其守恒定律。该方法在机器学习动力学中可作为连续时间归一化或时间扭曲算子,稳定物理信息神经网络等AI系统中的潜在流架构。

arXiv:2510.09805v1 Announce Type: cross Abstract: We present a latent-space formulation of adaptive temporal reparametrization for continuous-time dynamical systems. The method, called temporal lifting, introduces a smooth monotone mapping $t \mapsto \tau(t)$ that regularizes near-singular behavior of the underlying flow while preserving its conservation laws. In the lifted coordinate, trajectories such as those of the incompressible Navier-Stokes equations on the torus $\mathbb{T}^3$ become globally smooth. From the standpoint of machine-learning dynamics, temporal lifting acts as a continuous-time normalization or time-warping operator that can stabilize physics-informed neural networks and other latent-flow architectures used in AI systems. The framework links analytic regularity theory with representation-learning methods for stiff or turbulent processes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时序提升 连续动力系统 自适应时变参数化 机器学习动力学 物理信息神经网络
相关文章