cs.AI updates on arXiv.org 10月14日
LLMs辅助过程模型解释性评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文报告了在行为输入逐步减少的情况下,对LLMs生成过程模型解释的质量进行的探索性评估。研究表明,在中等程度的减少下,解释质量可以得到较好的保留,为资源受限环境下的LLM辅助过程分析提供了途径。

arXiv:2510.09732v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly used to generate textual explanations of process models discovered from event logs. Producing explanations from large behavioral abstractions (e.g., directly-follows graphs or Petri nets) can be computationally expensive. This paper reports an exploratory evaluation of explanation quality under progressive behavioral-input reduction, where models are discovered from progressively smaller prefixes of a fixed log. Our pipeline (i) discovers models at multiple input sizes, (ii) prompts an LLM to generate explanations, and (iii) uses a second LLM to assess completeness, bottleneck identification, and suggested improvements. On synthetic logs, explanation quality is largely preserved under moderate reduction, indicating a practical cost-quality trade-off. The study is exploratory, as the scores are LLM-based (comparative signals rather than ground truth) and the data are synthetic. The results suggest a path toward more computationally efficient, LLM-assisted process analysis in resource-constrained settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 过程模型 解释质量 资源受限
相关文章