cs.AI updates on arXiv.org 10月14日 12:13
PTDI:严格FDR控制的训练数据识别方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PTDI方法,通过严格FDR控制识别大规模模型中的训练数据,有效提升识别效率和准确性。

arXiv:2510.09717v1 Announce Type: cross Abstract: Identifying training data within large-scale models is critical for copyright litigation, privacy auditing, and ensuring fair evaluation. The conventional approaches treat it as a simple binary classification task without statistical guarantees. A recent approach is designed to control the false discovery rate (FDR), but its guarantees rely on strong, easily violated assumptions. In this paper, we introduce Provable Training Data Identification (PTDI), a rigorous method that identifies a set of training data with strict false discovery rate (FDR) control. Specifically, our method computes p-values for each data point using a set of known unseen data, and then constructs a conservative estimator for the data usage proportion of the test set, which allows us to scale these p-values. Our approach then selects the final set of training data by identifying all points whose scaled p-values fall below a data-dependent threshold. This entire procedure enables the discovery of training data with provable, strict FDR control and significantly boosted power. Extensive experiments across a wide range of models (LLMs and VLMs), and datasets demonstrate that PTDI strictly controls the FDR and achieves higher power.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PTDI 训练数据识别 FDR控制 大规模模型 数据隐私
相关文章