arXiv:2510.09711v1 Announce Type: cross Abstract: Large Language Models (LLMs) have recently emerged as a powerful paradigm for Knowledge Graph Completion (KGC), offering strong reasoning and generalization capabilities beyond traditional embedding-based approaches. However, existing LLM-based methods often struggle to fully exploit structured semantic representations, as the continuous embedding space of pretrained KG models is fundamentally misaligned with the discrete token space of LLMs. This discrepancy hinders effective semantic transfer and limits their performance. To address this challenge, we propose ReaLM, a novel and effective framework that bridges the gap between KG embeddings and LLM tokenization through the mechanism of residual vector quantization. ReaLM discretizes pretrained KG embeddings into compact code sequences and integrates them as learnable tokens within the LLM vocabulary, enabling seamless fusion of symbolic and contextual knowledge. Furthermore, we incorporate ontology-guided class constraints to enforce semantic consistency, refining entity predictions based on class-level compatibility. Extensive experiments on two widely used benchmark datasets demonstrate that ReaLM achieves state-of-the-art performance, confirming its effectiveness in aligning structured knowledge with large-scale language models.
