cs.AI updates on arXiv.org 10月14日
CREST-Search:LLM与网络搜索结合的安全风险研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)与网络搜索结合的安全风险,提出CREST-Search框架,通过生成对抗查询和迭代反馈,系统性地揭示此类系统的风险,并构建WebSearch-Harm数据集以提升LLMs的红队能力。

arXiv:2510.09689v1 Announce Type: cross Abstract: Large Language Models (LLMs) excel at tasks such as dialogue, summarization, and question answering, yet they struggle to adapt to specialized domains and evolving facts. To overcome this, web search has been integrated into LLMs, allowing real-time access to online content. However, this connection magnifies safety risks, as adversarial prompts combined with untrusted sources can cause severe vulnerabilities. We investigate red teaming for LLMs with web search and present CREST-Search, a framework that systematically exposes risks in such systems. Unlike existing methods for standalone LLMs, CREST-Search addresses the complex workflow of search-enabled models by generating adversarial queries with in-context learning and refining them through iterative feedback. We further construct WebSearch-Harm, a search-specific dataset to fine-tune LLMs into efficient red-teaming agents. Experiments show that CREST-Search effectively bypasses safety filters and reveals vulnerabilities in modern web-augmented LLMs, underscoring the need for specialized defenses to ensure trustworthy deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 网络搜索 安全风险 CREST-Search 红队
相关文章